Raman spectroscopic determination of the structure and orientation of organic monolayers chemisorbed on carbon electrode surfaces.
نویسندگان
چکیده
Azobenzene (AB) and 4-nitroazobenzene (NAB) were covalently bonded to carbon surfaces by electrochemical reduction of their diazonium derivatives. The N(1s) features of XPS spectra of modified surfaces had intensities expected for monolayer coverage. However, the Raman spectra were significantly more intense than expected, implying an increase in scattering cross section upon chemisorption. A likely explanation is resonance enhancement of the carbon/adsorbate chromophore analogous to that reported earlier for dinitrophenylhydrazine (DNPH) chemisorption. Vibrational assignments indicate that the C-C vibration between azobenzene and the carbon surface is in the 1240-1280 cm(-1) region, and this conclusion is supported by spectra obtained from [(13)C]graphite. Observation of depolarization ratios for 4-nitroazobenzene and DNPH on graphite edge plane indicate that NAB is able to rotate about the NAB/carbon C-C bond, while chemisorbed DNPH is not. The partial multiple bond character of the DNPH linkage to graphite is consistent with the observation that the DNPH π system remains parallel to the graphitic planes.
منابع مشابه
In situ Raman spectroelectrochemistry of azobenzene monolayers on glassy carbon.
In situ Raman spectra of chemisorbed azobenzene (AB) monolayers on glassy carbon (GC) electrodes were observed under potentiostatic conditions in acetonitrile (ACN) with tetrabutyl-ammonium tetrafluoroborate (TBA-BF4). The Raman intensities of these spectra were high below -1000 mV, and this is attributed to the change in absorbance of AB on GC. In this paper, we describe chemisorbed AB molecul...
متن کاملDetermination of the structure and orientation of organic molecules tethered to flat graphitic carbon by ATR-FT-IR and Raman spectroscopy.
Mono- and multilayers of nitroazobenzene (NAB), azobenzene (AB), nitrobiphenyl (NBP), biphenyl (BP), and fluorene (FL) were covalently bonded to flat pyrolyzed photoresist films (PPF) by electrochemical reduction of their diazonium derivatives. The structure and orientation of the molecular layers were probed with ATR-FT-IR and Raman spectroscopy. A hemispherical germanium ATR element used with...
متن کاملOne Pot Chemically Attachment of Amino Groups on Multi walled Carbon Nanotubes Surfaces
Functionalization of multiwalled carbon nanotubes (MWCNTs) with NH2 groups under a one pot reaction is studied. During the first step of the reaction, Cl and CHCl2 groups were attached to the surfaces of MWCNTs through an electrophilic addition reaction. In the second step of process, Cl atoms were replaced with NH2 and amino groups (ethylene diamine and but...
متن کاملModified Glass Carbon Electrode (GCE) Electropolymerized Polypyrrole Nanofibers with Hemoglobin (Hb) Film as a Unique Biosensor for Nitrite Determination
Abstract: In this study, we were investigated behavior the electrochemical reductionof nitrite at a hemoglobin (Hb) immobilized on glass carbon electrode (GCE) containingpolypyrol nanofiber (ppy) films. Polypyrrole (PPy) nanofibers have been constructed onGCE applying electrochemical technique, and can to deposit diverse polymers onminiaturized electrodes with this commo...
متن کاملMultiwall Carbon Nanotubes Modified Carbon Paste Electrode for Determination of Copper(II) by Potentiometric and Impedimetric Methods
A chemically modified carbon paste electrode with multiwall carbon nanotube (MWCNT) was prepared and used as a sensor for Cu2+ ion. The unique chemical and physical properties of CNT have paved the way to new and improved sensing devices. A central composite chemometrics design was applied for multivariate optimization of the effects of three significant parameters (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 69 11 شماره
صفحات -
تاریخ انتشار 1997